If \(f(x) = \sin x e^{\sin x}\), find \(f'(x)\)
If \(tan(x - y) = \frac{4}{5}\), \(\tan(x + y) = \frac{6}{5}\), then \(\tan(2x) =\)
If \(f(x)\) is continuous in \(\mathbb{R}\),
find \(k\).
The angle θ between the vectors \(\rm \vec{a} = 5\hat{i} - \hat{j} + \hat{k}\) and \(\rm \vec{b} = \hat{i} + \hat{j} - \hat{k}\) equals to
The equation $e ^{4 x}+8 e ^{3 x}+13 e ^{2 x}-8 e ^x+1=0, x \in R$ has :