Check for reflexivity:
Since \[ 3(a - a) + \sqrt{7} = \sqrt{7} \] which is irrational, the relation is reflexive.
Check for symmetry:
Let \( a = \frac{\sqrt{7}}{3}, b = 0 \). Then \( (a, b) \in R \) but \( (b, a) \notin R \).
Since \[ 3(b - a) + \sqrt{7} = 0 \] which is rational, the relation is not symmetric.
Check for transitivity:
Let \( (a, b) = \left( 1, \frac{2\sqrt{7}}{3} \right) \) and \( (b, c) = \left( 1, \frac{2\sqrt{7}}{3} \right) \). Then, \( (a, b) \in R \) and \( (b, c) \in R \), but \( (a, c) \notin R \), so the relation is not transitive.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Some important operations on sets include union, intersection, difference, and the complement of a set, a brief explanation of operations on sets is as follows:
1. Union of Sets:
2. Intersection of Sets:
3.Set Difference:
4.Set Complement: