We are given:
\[
\vec{a} = \hat{j} - \hat{k} = \langle 0, 1, -1 \rangle, \quad
\vec{c} = \hat{i} - \hat{j} - \hat{k} = \langle 1, -1, -1 \rangle
\]
Also:
\[
\vec{a} \times \vec{b} = -\vec{c} \Rightarrow \vec{a} \times \vec{b} = \langle -1, 1, 1 \rangle
\]
Let:
\[
\vec{b} = \langle x, y, z \rangle
\]
Compute:
\[
\vec{a} \times \vec{b} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
0 & 1 & -1
x & y & z
\end{vmatrix}
= \hat{i}(1 \cdot z - (-1) \cdot y) - \hat{j}(0 \cdot z - (-1) \cdot x) + \hat{k}(0 \cdot y - 1 \cdot x)
= \langle z + y, -x, -x \rangle
\]
So:
\[
\vec{a} \times \vec{b} = \langle z + y, -x, -x \rangle = \langle -1, 1, 1 \rangle
\]
Compare components:
- \( z + y = -1 \)
- \( -x = 1 \Rightarrow x = -1 \)
- \( -x = 1 \Rightarrow x = -1 \) (consistent)
From \( x = -1 \), and \( z + y = -1 \), we can write:
\[
z = -1 - y
\]
Also given:
\[
\vec{a} \cdot \vec{b} = 3 \Rightarrow (0)(x) + (1)(y) + (-1)(z) = y - z = 3
\]
Substitute \( z = -1 - y \):
\[
y - (-1 - y) = 3 \Rightarrow y + 1 + y = 3 \Rightarrow 2y = 2 \Rightarrow y = 1
\]
Now:
\[
z = -1 - y = -1 - 1 = -2
\]
So:
\[
\vec{b} = \langle x, y, z \rangle = \langle -1, 1, -2 \rangle
\]
Final Answer:
\[
\boxed{\vec{b} = -\hat{i} + \hat{j} - 2\hat{k}}
\]