We are given the integral \( \int \sin x \cdot \sin 2x \, dx \). To solve this, we use the product-to-sum identity:
\[
\sin x \cdot \sin 2x = \frac{1}{2} [ \cos(x - 2x) - \cos(x + 2x) ] = \frac{1}{2} [ \cos(-x) - \cos(3x) ]
\]
Since \( \cos(-x) = \cos x \), this simplifies to:
\[
\sin x \cdot \sin 2x = \frac{1}{2} [ \cos x - \cos 3x ]
\]
Thus, the integral becomes:
\[
\int \sin x \cdot \sin 2x \, dx = \frac{1}{2} \int [ \cos x - \cos 3x ] \, dx
\]
Now, integrate each term:
\[
\frac{1}{2} \left[ \sin x - \frac{1}{3} \sin 3x \right] = \frac{1}{4} \cos 3x - \frac{1}{4} \cos x
\]
Thus, the correct answer is \( -\frac{1}{4} \cos 3x + \frac{1}{4} \cos x \).