Coefficients of middle terms
\(\begin{array}{l} ^4C_2\frac{1}{6}\beta^2,\ ^2C_1\left(-3\beta\right),\ ^6C_3\left(\frac{-\beta}{2}\right)^3 \text{form an A.P.} \\\therefore\ 2.2\left(-3\beta\right)=\beta^2-\frac{5\beta^3}{2}\end{array}\)
\(\begin{array}{l}\Rightarrow -24 = 2\beta – 5\beta^2 \\ \Rightarrow 5\beta^2- 2\beta- 24 = 0\\ \Rightarrow 5\beta^2- 12\beta + 10\beta – 24 = 0\\ \Rightarrow \beta \left(5\beta- 12\right) + 2 \left(5\beta – 12\right) = 0\end{array}\)
\(\begin{array}{l}\beta = \frac{12}{5} \\ d = -6\beta – \beta^2\end{array}\)
\(\begin{array}{l} \therefore\ 50-\frac{2d}{\beta^2}=50-2\frac{\left(-6\beta-\beta^2\right)}{\beta^2}=50+\frac{12}{\beta}+2=57\end{array}\)