Let S = 1, 2, 3, 4, 5, 6, 7. Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n) = f(m) \cdot f(n)$ for every $m, n \in S$ and $m \cdot n \in S$ is equal to _________.
Let , $x \in [0, \pi]$. Then the maximum value of $f(x)$ is equal to _________.