The correct option is(A): \(\frac{1}{3}\)
Area of the shaded region
\(=2∫_0^1(\frac{y^2+3}{4}-\frac{y^2+1}{2})dy\)
\(=2∫_0^1(\frac{1}{4}-\frac{y^2}{4})dy\)
\(=2[\frac{1}{4}-\frac{1}{12}]=\frac{1}{3}\)
Find the equivalent capacitance between A and B, where \( C = 16 \, \mu F \).
If the equation of the parabola with vertex \( \left( \frac{3}{2}, 3 \right) \) and the directrix \( x + 2y = 0 \) is \[ ax^2 + b y^2 - cxy - 30x - 60y + 225 = 0, \text{ then } \alpha + \beta + \gamma \text{ is equal to:} \]
Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).
=> MP2 = PS2
=> MP2 = PS2
So, (b + y)2 = (y - b)2 + x2