\(\frac{25}{4\sqrt3}\)
\(\frac{25\sqrt3}{2}\)
\(\frac{25}{\sqrt3}\)
\(\frac{25}{2\sqrt3}\)
The correct answer is (D) : \(\frac{25}{2\sqrt3}\)
Altitude of equilateral triangle,
\(\frac{\sqrt3l}{2}=\frac{5}{\sqrt2}\)
\(l=\frac{5\sqrt2}{\sqrt3}\)
Area of triangle
\(=\frac{\sqrt3}{4}l^2=\frac{\sqrt3}{4}.\frac{50}{3}=\frac{25}{2\sqrt3}\)
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.