\(f(x)=∫_0 ^{x^2} \frac{t^2–5t+4}{2+et}dt\)
\(f'(x)=2x\bigg(\frac{x^4–5x^2+4}{2+ex^2}\bigg)=0\)
\(x=0\), or \((x^2–4)(x^2–1)=0\)
\(x = 0, x = ±2, ±1\)
Now,
\(f'(x)=\frac{2x(x+1)(x-1)(x+2)(x-2)}{(ex^2+2)}\)
changes sign from positive to negative at
\(x = –1\), \(1\) So, number of local maximum points = \(2\)
changes sign from negative to positive at
\(x = –2, 0, 2\)
Hence, number of local minimum points = \(3\)
\(∴ m = 2, n = 3\)
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:

A symmetric thin biconvex lens is cut into four equal parts by two planes AB and CD as shown in the figure. If the power of the original lens is 4D, then the power of a part of the divided lens is:

The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.

There are two types of maxima and minima that exist in a function, such as: