\(f(x)=∫_0 ^{x^2} \frac{t^2–5t+4}{2+et}dt\)
\(f'(x)=2x\bigg(\frac{x^4–5x^2+4}{2+ex^2}\bigg)=0\)
\(x=0\), or \((x^2–4)(x^2–1)=0\)
\(x = 0, x = ±2, ±1\)
Now,
\(f'(x)=\frac{2x(x+1)(x-1)(x+2)(x-2)}{(ex^2+2)}\)
changes sign from positive to negative at
\(x = –1\), \(1\) So, number of local maximum points = \(2\)
changes sign from negative to positive at
\(x = –2, 0, 2\)
Hence, number of local minimum points = \(3\)
\(∴ m = 2, n = 3\)
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: