\(f(x)=∫_0 ^{x^2} \frac{t^2–5t+4}{2+et}dt\)
\(f'(x)=2x\bigg(\frac{x^4–5x^2+4}{2+ex^2}\bigg)=0\)
\(x=0\), or \((x^2–4)(x^2–1)=0\)
\(x = 0, x = ±2, ±1\)
Now,
\(f'(x)=\frac{2x(x+1)(x-1)(x+2)(x-2)}{(ex^2+2)}\)
changes sign from positive to negative at
\(x = –1\), \(1\) So, number of local maximum points = \(2\)
changes sign from negative to positive at
\(x = –2, 0, 2\)
Hence, number of local minimum points = \(3\)
\(∴ m = 2, n = 3\)
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: