Let the hyperbola
\(H:\frac{x^2}{a^2}−y^2=1\)
and the ellipse
\(E:3x^2+4y^2=12\)
be such that the length of latus rectum of H is equal to the length of latus rectum of E. If eH and eE are the eccentricities of H and E respectively, then the value of
\(12 (e^{2}_H+e^{2}_E)\) is equal to _____ .
The correct answer is 42
\(∴ H:\frac{x^2}{a^2}−\frac{y^2}{1}=1\)
∴ Length of latus rectum
\(=\frac{2}{a}\)
\(E:3x^2+4y^2=12\)
Length of latus rectum
\(= \frac{6}{2} = 3\)
\(\because \frac{2}{a} = 3 ⇒ a = \frac{2}{3}\)
\(12 (e^{2}_H+e^{2}_E)\)
\( = 12(1+\frac{9}{4})+(1-\frac{3}{4})\)
\(= 42\)
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Hyperbola is the locus of all the points in a plane such that the difference in their distances from two fixed points in the plane is constant.
Hyperbola is made up of two similar curves that resemble a parabola. Hyperbola has two fixed points which can be shown in the picture, are known as foci or focus. When we join the foci or focus using a line segment then its midpoint gives us centre. Hence, this line segment is known as the transverse axis.