Let the hyperbola
\(H:\frac{x^2}{a^2}−y^2=1\)
and the ellipse
\(E:3x^2+4y^2=12\)
be such that the length of latus rectum of H is equal to the length of latus rectum of E. If eH and eE are the eccentricities of H and E respectively, then the value of
\(12 (e^{2}_H+e^{2}_E)\) is equal to _____ .
The correct answer is 42
\(∴ H:\frac{x^2}{a^2}−\frac{y^2}{1}=1\)
∴ Length of latus rectum
\(=\frac{2}{a}\)
\(E:3x^2+4y^2=12\)
Length of latus rectum
\(= \frac{6}{2} = 3\)
\(\because \frac{2}{a} = 3 ⇒ a = \frac{2}{3}\)
\(12 (e^{2}_H+e^{2}_E)\)
\( = 12(1+\frac{9}{4})+(1-\frac{3}{4})\)
\(= 42\)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
Hyperbola is the locus of all the points in a plane such that the difference in their distances from two fixed points in the plane is constant.
Hyperbola is made up of two similar curves that resemble a parabola. Hyperbola has two fixed points which can be shown in the picture, are known as foci or focus. When we join the foci or focus using a line segment then its midpoint gives us centre. Hence, this line segment is known as the transverse axis.
