\(f(x) = \begin{cases} \frac{sin(x-|x|)}{x-|x|} & \quad {x \in(-2,-1) } \\ max{2x,3[|x|]}, & \quad \text{|x|<1}\\1 & \quad \text{,otherwise} \end{cases}\)
\( \begin{cases} \frac{sin(x+2)}{x+2} & \quad {x \in(-2,-1) } \\ 0, & \quad x \in(-1,0)]\\1 & \quad \text{,otherwise} \end{cases}\)
It clearly shows that \(f(x)\) is discontinuous at \(x = –1,\) \(1\) also non differentiable and at \(x = 0\),
L.H.D
= \( \lim_{h\to0} \frac{f(0+h)-f(0)}{h} \) = \(0\)
R.H.D
\( \lim_{h\to0} \frac{f(0+h)-f(0)}{h} =2\)
∴ \(f(x)\) is not differentiable at \(x = 0\)
∴ \(m = 2\), \(n = 3\)
Hence, the correct option is (C): \((2, 3)\)
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: