\(f(x) = \begin{cases} \frac{sin(x-|x|)}{x-|x|} & \quad {x \in(-2,-1) } \\ max{2x,3[|x|]}, & \quad \text{|x|<1}\\1 & \quad \text{,otherwise} \end{cases}\)
\( \begin{cases} \frac{sin(x+2)}{x+2} & \quad {x \in(-2,-1) } \\ 0, & \quad x \in(-1,0)]\\1 & \quad \text{,otherwise} \end{cases}\)
It clearly shows that \(f(x)\) is discontinuous at \(x = –1,\) \(1\) also non differentiable and at \(x = 0\),
L.H.D
= \( \lim_{h\to0} \frac{f(0+h)-f(0)}{h} \) = \(0\)
R.H.D
\( \lim_{h\to0} \frac{f(0+h)-f(0)}{h} =2\)
∴ \(f(x)\) is not differentiable at \(x = 0\)
∴ \(m = 2\), \(n = 3\)
Hence, the correct option is (C): \((2, 3)\)