Reaction A(g) → 2B(g) + C(g) is a first-order reaction. It was started with pure A. The following table shows the pressure of the system at different times: Which of the following options is incorrect?
A body of mass $m$ is suspended by two strings making angles $\theta_{1}$ and $\theta_{2}$ with the horizontal ceiling with tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ simultaneously. $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are related by $\mathrm{T}_{1}=\sqrt{3} \mathrm{~T}_{2}$. the angles $\theta_{1}$ and $\theta_{2}$ are
An alternating current is represented by the equation, $\mathrm{i}=100 \sqrt{2} \sin (100 \pi \mathrm{t})$ ampere. The RMS value of current and the frequency of the given alternating current are
Two liquids A and B have $\theta_{\mathrm{A}}$ and $\theta_{\mathrm{B}}$ as contact angles in a capillary tube. If $K=\cos \theta_{\mathrm{A}} / \cos \theta_{\mathrm{B}}$, then identify the correct statement:
Let \( y = f(x) \) be the solution of the differential equation\[\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}, \quad -1 < x < 1\] such that \( f(0) = 0 \). If \[6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - \alpha\] then \( \alpha^2 \) is equal to ______.
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
Let the three sides of a triangle are on the lines \( 4x - 7y + 10 = 0,\quad x + y = 5,\quad 7x + 4y = 15 \). Then the distance of its orthocentre from the orthocentre of the triangle formed by the lines \( x = 0,\quad y = 0,\quad x + y = 1 \) is
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
If \(\int e^x \left( \frac{x \sin^{-1} x}{\sqrt{1-x^2}} + \frac{\sin^{-1} x}{(1-x^2)^{3/2}} + \frac{x}{1-x^2} \right) dx = g(x) + C\), where C is the constant of integration, then \(g\left( \frac{1}{2} \right)\)equals: