Concept:
For a matrix \(A\) of order \(n\):
\(|kA| = k^{n}|A|\)
\(|\text{adj}(A)| = |A|^{\,n-1}\)
\(|AB| = |A|\cdot|B|\)
Here, \(n = 3\).
Step 1: Evaluate \(|\text{adj}(2A)|\).
\[
|2A| = 2^3|A| = 8 \times 5 = 40
\]
\[
|\text{adj}(2A)| = |2A|^{2} = 40^2 = 1600
\]
Step 2: Evaluate \(|3A\,\text{adj}(2A)|\).
\[
|3A| = 3^3|A| = 27 \times 5 = 135
\]
\[
|3A\,\text{adj}(2A)| = |3A|\cdot|\text{adj}(2A)|
= 135 \times 1600 = 216000
\]
Step 3: Evaluate \(\left|\text{adj}\big(3A\,\text{adj}(2A)\big)\right|\).
\[
\left|\text{adj}(M)\right| = |M|^{2}
\Rightarrow \left|\text{adj}\big(3A\,\text{adj}(2A)\big)\right|
= (216000)^2
\]
Step 4: Multiply by the scalar \(2\).
\[
\left|2\,\text{adj}\big(3A\,\text{adj}(2A)\big)\right|
= 2^3 \times (216000)^2
\]
Now,
\[
216000 = 2^6 \cdot 3^3 \cdot 5^3
\]
\[
(216000)^2 = 2^{12}\cdot 3^6 \cdot 5^6
\]
Thus,
\[
2^3 \times (216000)^2 = 2^{15}\cdot 3^6 \cdot 5^6
\]
Step 5: Identify powers.
\[
\alpha = 15,\quad \beta = 6,\quad \gamma = 6
\]
\[
\alpha + \beta + \gamma = 15 + 6 + 6 = \boxed{27}
\]