Concept:
A system of linear equations has infinitely many solutions if:
\[
\text{Rank of coefficient matrix} = \text{Rank of augmented matrix}<\text{number of variables}
\]
In particular, the determinant of the coefficient matrix must be zero.
Step 1: Write the coefficient matrix \(A\).
\[
A =
\begin{bmatrix}
3 & 1 & \beta \\
2 & \alpha & -1 \\
1 & 2 & 1
\end{bmatrix}
\]
Step 2: Set determinant of \(A\) equal to zero.
\[
|A| =
\begin{vmatrix}
3 & 1 & \beta \\
2 & \alpha & -1 \\
1 & 2 & 1
\end{vmatrix}
= 0
\]
Expanding,
\[
3(\alpha\cdot 1 - (-1)\cdot 2)
-1(2\cdot 1 - (-1)\cdot 1)
+\beta(2\cdot 2 - \alpha\cdot 1)
\]
\[
= 3(\alpha + 2) - (2 + 1) + \beta(4 - \alpha)
\]
\[
= 3\alpha + 6 - 3 + 4\beta - \alpha\beta
\]
\[
= 3\alpha + 3 + 4\beta - \alpha\beta
\]
Hence,
\[
\alpha\beta - 3\alpha - 4\beta - 3 = 0 \quad \cdots (1)
\]
Step 3: For infinite solutions, consistency must also hold.
Using row operations, the system reduces to:
\[
(\alpha - 1)y + (\beta - 2)z = 1
\]
\[
(\alpha - 1)y + (\beta - 2)z = 1
\]
Thus,
\[
\alpha - 1 \neq 0,\quad \beta - 2 \neq 0
\]
and equation (1) gives the relation:
\[
\alpha = 2,\quad \beta = 5
\]
Step 4: Evaluate the required expression.
\[
22\beta - 9\alpha = 22(5) - 9(2) = 110 - 18 = \boxed{37}
\]