If \( \alpha \) and \( \beta \) are non-real numbers satisfying \( x^3 - 1 = 0 \), then the value of \[ \left| \begin{matrix} \lambda+1 & \alpha & \beta \\ \beta & \lambda + \beta & 1 \\ 1 & \lambda + \alpha & \lambda + \alpha \end{matrix} \right| \] is:
\(\text{The number of solutions of the equation}\)\(\left(\frac{9}{x}-\frac{9}{\sqrt{x}}+2\right)\left(\frac{2}{x}-\frac{7}{\sqrt{x}}+3\right)=0\mathrm \; {is:}\)
Which of the following is an octal number equal to decimal number \((896)_{10}\)?