Let $u(x,t)$ be the solution of the initial–boundary value problem
\[
\frac{\partial u}{\partial t}-\frac{\partial^2 u}{\partial x^2}=0, x\in(0,2),\ t>0,
\]
\[
u(x,0)=\sin(\pi x), x\in(0,2),\qquad
u(0,t)=u(2,t)=0.
\]
Then the value of $e^{\pi^2}\!\left(u\!\left(\tfrac{1}{2},1\right)-u\!\left(\tfrac{3}{2},1\right)\right)$ is ________________ (in integer).