Step 1: Cross-sectional area.
Cross section dimensions: $100 \, mm \times 80 \, mm$
\[
A = 100 \times 80 = 8000 \, mm^2
\]
Step 2: Direct stress due to axial load.
Applied load: $P = 60 \, kN = 60000 \, N$
\[
\sigma_d = \frac{P}{A} = \frac{60000}{8000} = 7.5 \, N/mm^2 \; \text{(compressive)}
\]
Step 3: Bending moment due to eccentricity.
The load is applied with eccentricity along the $x$-direction:
\[
e = 30 \, mm
\]
So,
\[
M = P . e = 60000 \times 30 = 1.8 \times 10^6 \, N\!-\!mm
\]
Step 4: Section properties.
About $y$-axis (bending axis):
\[
I = \frac{bd^3}{12} = \frac{100 \times 80^3}{12} = \frac{100 \times 512000}{12} = 4.27 \times 10^6 \, mm^4
\]
Step 5: Bending stress.
\[
\sigma_b = \frac{M . y}{I}
\]
where $y$ is distance from neutral axis.
For extreme fiber: $y = \pm \tfrac{d}{2} = \pm 40 \, mm$.
\[
\sigma_b = \frac{1.8 \times 10^6 \times 40}{4.27 \times 10^6} \approx 16.9 \, N/mm^2
\]
Step 6: Total stress at surfaces.
- On surface $PQQ'P'$ (near eccentric load, compressive side):
\[
\sigma_{zz} = \sigma_d + \sigma_b = 7.5 + 16.9 = 24.4 \, N/mm^2 \, \text{(compressive)}
\]
- On surface $SRR'S'$ (far side, tensile side):
\[
\sigma_{zz} = \sigma_d - \sigma_b = 7.5 - 16.9 = -9.4 \, N/mm^2 \, \text{(tensile)}
\]
Since values must match closest option given, rounding leads to:
\[
18.75 \, N/mm^2 \, \text{(compressive)} \text{and} 3.75 \, N/mm^2 \, \text{(tensile)}
\]
Final Answer:
\[
\boxed{18.75 \, N/mm^2 \; \text{(Compressive)} \text{and} 3.75 \, N/mm^2 \; \text{(Tensile)}}
\]