Step 1: Strain-stress relation in 3D.
For isotropic elasticity:
\[
\varepsilon_z = \frac{1}{E} \Big(\sigma_z - \nu (\sigma_x + \sigma_y)\Big)
\]
Step 2: Given conditions.
- $\varepsilon_z = -3 \times 10^{-4}$
- $\sigma_x = 120 \, MPa$, $\sigma_z = 0$ (plane stress)
So:
\[
-3 \times 10^{-4} = \frac{1}{200 \times 10^3} \Big(0 - 0.3(120 + \sigma_y)\Big)
\]
Step 3: Simplify.
\[
-3 \times 10^{-4} = \frac{-0.3(120 + \sigma_y)}{200 \times 10^3}
\]
Multiply:
\[
-60 = -0.3(120 + \sigma_y)
\]
\[
60 = 0.3(120 + \sigma_y)
\]
\[
60 = 36 + 0.3\sigma_y
\]
\[
0.3\sigma_y = 24 \Rightarrow \sigma_y = 80 \, MPa
\]
Correction: Factor error—recheck:
\[
-3 \times 10^{-4} . 200 \times 10^3 = -60
\]
\[
-60 = -0.3(120 + \sigma_y)
\]
\[
60 = 0.3(120 + \sigma_y)
\]
\[
\sigma_y = 80 \, MPa
\]
Final Answer:
\[
\boxed{80 \, MPa}
\]