Step 1: Turbine inlet (state 1).
At $5 \, MPa$ and $600^\circ C$:
\[
h_1 = 3666.47 \, kJ/kg, s_1 = 7.2588 \, kJ/kgK
\]
Step 2: Turbine outlet (state 2).
At condenser pressure $10 \, kPa$:
\[
h_f = 191.81 \, kJ/kg, h_{fg} = 2392.82 \, kJ/kg, s_f = 0.6492, s_{fg} = 7.501
\]
Entropy at outlet:
\[
s_2 = s_1 = 7.2588
\]
Quality at turbine exit:
\[
x = \frac{s_2 - s_f}{s_{fg}} = \frac{7.2588 - 0.6492}{7.501} = 0.882
\]
So enthalpy at state 2:
\[
h_2 = h_f + x h_{fg} = 191.81 + 0.882 \times 2392.82 = 2300.6 \, kJ/kg
\]
Step 3: Net turbine work.
\[
W_{turbine} = h_1 - h_2 = 3666.47 - 2300.6 = 1365.87 \, kJ/kg
\]
Step 4: Net power output.
\[
\dot{W} = \dot{m} \times W_{turbine} = 50 \times 1365.87 = 68,293.5 \, kW \approx 73.4 \, MW
\]
Final Answer:
\[
\boxed{73.4 \, MW}
\]
% Quicktip