Step 1: Define tensions.
Let tension in left string = $T$, tension in right string = $2T$.
Step 2: Vertical equilibrium.
Both strings make $60^\circ$ with the horizontal $\Rightarrow$ angle with vertical = $30^\circ$.
Vertical components:
\[
T \cos 30^\circ + 2T \cos 30^\circ = mg
\]
\[
3T . \frac{\sqrt{3}}{2} = 10 . 10
\]
\[
T = \frac{100}{3 . 0.866} \approx 38.5 \, N
\]
Step 3: Horizontal components (net force).
Right string horizontal: $2T \sin 30^\circ = 2T . 0.5 = T$
Left string horizontal: $T \sin 30^\circ = 0.5T$
Net horizontal force:
\[
F_{net} = T - 0.5T = 0.5T
\]
\[
F_{net} = 0.5 \times 38.5 = 19.25 \, N
\]
Step 4: Acceleration.
\[
a = \frac{F_{net}}{m} = \frac{19.25}{10} \approx 1.9 \, m/s^2
\]
But recheck: If strings are $60^\circ$ from horizontal (not from vertical), then angle with vertical is $60^\circ$.
Correcting:
Vertical equilibrium:
\[
T \sin 60^\circ + 2T \sin 60^\circ = mg
\]
\[
3T . 0.866 = 100
\]
\[
T = 38.5 \, N
\]
Horizontal force:
\[
F_{net} = 2T \cos 60^\circ - T \cos 60^\circ = T . 0.5 = 19.25 \, N
\]
\[
a = \frac{19.25}{10} \approx 1.9 \, m/s^2
\]
Final Answer:
\[
\boxed{1.9 \, m/s^2}
\]