Step 1: Principal stresses.
From the given state:
\[
\sigma_1 = 420 \, MPa, \sigma_2 = 100 \, MPa, \sigma_3 = 0
\]
Step 2: Tresca criterion (Maximum shear stress).
Maximum shear stress:
\[
\tau_{max} = \frac{\sigma_{max} - \sigma_{min}}{2} = \frac{420 - 0}{2} = 210 \, MPa
\]
Tresca yield limit:
\[
\tau_{max} \leq \frac{\sigma_y}{2} = \frac{400}{2} = 200 \, MPa
\]
Here:
\[
210>200 \Rightarrow \text{Unsafe by Tresca}
\]
Step 3: von-Mises criterion (Distortion energy).
Von-Mises equivalent stress:
\[
\sigma_{vm} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}}
\]
Substitute:
\[
\sigma_{vm} = \sqrt{\frac{(420 - 100)^2 + (100 - 0)^2 + (0 - 420)^2}{2}}
\]
\[
= \sqrt{\frac{(320)^2 + (100)^2 + (420)^2}{2}}
= \sqrt{\frac{102400 + 10000 + 176400}{2}}
\]
\[
= \sqrt{\frac{288800}{2}} = \sqrt{144400} \approx 379.8 \, MPa
\]
Compare with yield stress $400 \, MPa$:
\[
\sigma_{vm} = 379.8<400 \Rightarrow \text{Safe by von-Mises}
\]
Final Answer:
\[
\boxed{\text{Unsafe by Tresca, Safe by von-Mises (Option C)}}
\]