The problem: Let \( u(x,t) \) be the solution of the initial value problem \[ \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in \mathbb{R}, \, t > 0, \] \[ u(x,0) = 0, \quad x \in \mathbb{R}, \quad \frac{\partial u}{\partial t}(x,0) = \begin{cases} x^4 (1 - x)^4, & 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases} \] If \( \alpha = \inf \{ t > 0 : u(2,t) > 0 \} \), then \( \alpha \) is equal to \(\_\_\_\_\_\_\) (round off to TWO decimal places).