Step 1: Understanding the Problem
The given quadrature formula involves the values of the function \( f \) and its derivative \( f' \) at \( x = -1 \) and \( x = 1 \). To ensure the formula is exact for all polynomials up to degree 3, we use polynomials of degree 1, 2, and 3 to derive relationships for \( \alpha, \beta, \gamma, \delta \).
Step 2: Applying Exactness Conditions
For exactness, the quadrature formula must exactly integrate polynomials of degree up to 3. We will apply this condition using specific test functions (polynomials) and then equate the results. For polynomials of degree 1, 2, and 3, we calculate integrals on the left-hand side and equate them with the quadrature formula on the right-hand side. This gives us a system of equations involving \( \alpha, \beta, \gamma, \delta \).
Step 3: Solving the System of Equations
By solving the system of equations derived from the exactness conditions, we obtain the values of \( \alpha, \beta, \gamma, \delta \).
Step 4: Final Computation Once we have the values of \( \alpha, \beta, \gamma, \delta \), we calculate \( 9(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \). \[ 9(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) = 20 \] Thus, the value is \( \boxed{20} \). % Final Answer \[ \boxed{20} \]
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \]
has infinitely many solutions, then \( \lambda + \mu \) is equal to:
Let \( [\cdot] \) denote the greatest integer function. If \[ \int_0^3 \left\lfloor \frac{1}{e^x - 1} \right\rfloor \, dx = \alpha - \log_e 2, \] then \( \alpha^3 \) is equal to:
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).