Let \( 0<\alpha<1 \). Define \[ C^\alpha[0, 1] = \left\{ f : [0, 1] \to \mathbb{R} \ : \ \sup_{s \neq t, \, s,t \in [0, 1]} \frac{|f(t) - f(s)|}{|t - s|^\alpha}<\infty \right\}. \] It is given that \( C^\alpha[0, 1] \) is a Banach space with respect to the norm \( \| \cdot \|_\alpha \) given by \[ \| f \|_\alpha = |f(0)| + \sup_{s \neq t, \, s,t \in [0, 1]} \frac{|f(t) - f(s)|}{|t - s|^\alpha}. \] Let \( C[0, 1] \) be the space of all real-valued continuous functions on \( [0, 1] \) with the norm \( \| f \|_\infty = \sup_{0 \leq t \leq 1} |f(t)| \).
If \( T: C^\alpha[0, 1] \to C[0, 1] \) is the map \( T f = f \), where \( f \in C^\alpha[0, 1] \), then which one of the following is/are TRUE?
The maximum value of the function \( f(x) = (x - 1)(x - 2)(x - 3) \) in the domain [0, 3] occurs at \( x = \) _________ (rounded off to two decimal places).
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).