Let \( 0<\alpha<1 \). Define \[ C^\alpha[0, 1] = \left\{ f : [0, 1] \to \mathbb{R} \ : \ \sup_{s \neq t, \, s,t \in [0, 1]} \frac{|f(t) - f(s)|}{|t - s|^\alpha}<\infty \right\}. \] It is given that \( C^\alpha[0, 1] \) is a Banach space with respect to the norm \( \| \cdot \|_\alpha \) given by \[ \| f \|_\alpha = |f(0)| + \sup_{s \neq t, \, s,t \in [0, 1]} \frac{|f(t) - f(s)|}{|t - s|^\alpha}. \] Let \( C[0, 1] \) be the space of all real-valued continuous functions on \( [0, 1] \) with the norm \( \| f \|_\infty = \sup_{0 \leq t \leq 1} |f(t)| \).
If \( T: C^\alpha[0, 1] \to C[0, 1] \) is the map \( T f = f \), where \( f \in C^\alpha[0, 1] \), then which one of the following is/are TRUE?
Let \( X = \{ f \in C[0,1] : f(0) = 0 = f(1) \} \) with the norm \( \|f\|_\infty = \sup_{0 \leq t \leq 1} |f(t)| \), where \( C[0,1] \) is the space of all real-valued continuous functions on \( [0,1] \).
Let \( Y = C[0,1] \) with the norm \( \|f\|_2 = \left( \int_0^1 |f(t)|^2 \, dt \right)^{\frac{1}{2}} \). Let \( U_X \) and \( U_Y \) be the closed unit balls in \( X \) and \( Y \) centered at the origin, respectively. Consider \( T: X \to \mathbb{R} \) and \( S: Y \to \mathbb{R} \) given by
\[ T(f) = \int_0^1 f(t) \, dt \quad \text{and} \quad S(f) = \int_0^1 f(t) \, dt. \]
Consider the following statements:
S1: \( \sup |T(f)| \) is attained at a point of \( U_X \).
S2: \( \sup |S(f)| \) is attained at a point of \( U_Y \).
Then, which one of the following is correct?
Let \( g(x, y) = f(x, y)e^{2x + 3y} \) be defined in \( \mathbb{R}^2 \), where \( f(x, y) \) is a continuously differentiable non-zero homogeneous function of degree 4. Then,
\[ x \frac{\partial g}{\partial x} + y \frac{\partial g}{\partial y} = 0 \text{ holds for} \]
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.