Question:

Let \( \hat{a} \) be a unit vector parallel to the tangent at the point \( P(1, 1, \sqrt{2}) \) to the curve of intersection of the surfaces \( 2x^2 + 3y^2 - z^2 = 3 \) and \( x^2 + y^2 = z^2 \). Then, the absolute value of the directional derivative of \[ f(x, y, z) = x^2 + 2y^2 - 2\sqrt{11} z \] at P in the direction of \( \hat{a} \) is _________ (in integer).

Show Hint

To compute the directional derivative, find the gradient of the function and the unit vector in the direction of the tangent, then compute their dot product.
Updated On: Apr 9, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are tasked with finding the absolute value of the directional derivative of the function \( f(x, y, z) = x^2 + 2y^2 - 2\sqrt{11}z \) at the point \( P(1, 1, \sqrt{2}) \) in the direction of the unit vector \( \hat{a} \), which is parallel to the tangent to the curve of intersection of the surfaces \( 2x^2 + 3y^2 - z^2 = 3 \) and \( x^2 + y^2 = z^2 \).

Step 1: Compute the gradient of \( f(x, y, z) \)

The gradient of \( f(x, y, z) \) is:
\[ \nabla f(x, y, z) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = (2x, 4y, -2\sqrt{11}) \]
At the point \( P(1, 1, \sqrt{2}) \), the gradient becomes:
\[ \nabla f(1, 1, \sqrt{2}) = (2, 4, -2\sqrt{11}) \]

Step 2: Find the direction vector \( \hat{a} \)

Let:
  • \( g_1(x, y, z) = 2x^2 + 3y^2 - z^2 \)
  • \( g_2(x, y, z) = x^2 + y^2 - z^2 \)
Then: \[ \nabla g_1 = (4x, 6y, -2z), \quad \nabla g_2 = (2x, 2y, -2z) \] At point \( (1, 1, \sqrt{2}) \), we compute: \[ \nabla g_1 = (4, 6, -2\sqrt{2}), \quad \nabla g_2 = (2, 2, -2\sqrt{2}) \] Now take the cross product: \[ \hat{a} = \nabla g_1 \times \nabla g_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 6 & -2\sqrt{2} \\ 2 & 2 & -2\sqrt{2} \end{vmatrix} = \hat{i}(6 \cdot -2\sqrt{2} - (-2\sqrt{2} \cdot 2)) - \hat{j}(4 \cdot -2\sqrt{2} - (-2\sqrt{2} \cdot 2)) + \hat{k}(4 \cdot 2 - 6 \cdot 2) \] \[ = \hat{i}(-12\sqrt{2} + 4\sqrt{2}) - \hat{j}(-8\sqrt{2} + 4\sqrt{2}) + \hat{k}(8 - 12) = \hat{i}(-8\sqrt{2}) + \hat{j}(4\sqrt{2}) - 4\hat{k} \] Thus, the direction vector is: \[ \vec{a} = (-8\sqrt{2}, 4\sqrt{2}, -4) \] Normalize it to get unit vector \( \hat{a} \): \[ |\vec{a}| = \sqrt{(-8\sqrt{2})^2 + (4\sqrt{2})^2 + (-4)^2} = \sqrt{128 + 32 + 16} = \sqrt{176} \] \[ \hat{a} = \left( \frac{-8\sqrt{2}}{\sqrt{176}}, \frac{4\sqrt{2}}{\sqrt{176}}, \frac{-4}{\sqrt{176}} \right) \]

Step 3: Compute the directional derivative

Use the dot product \( D_{\hat{a}}f = \nabla f \cdot \hat{a} \):
\[ \nabla f = (2, 4, -2\sqrt{11}), \quad \hat{a} = \left( \frac{-8\sqrt{2}}{\sqrt{176}}, \frac{4\sqrt{2}}{\sqrt{176}}, \frac{-4}{\sqrt{176}} \right) \] \[ D_{\hat{a}}f = 2 \cdot \frac{-8\sqrt{2}}{\sqrt{176}} + 4 \cdot \frac{4\sqrt{2}}{\sqrt{176}} + (-2\sqrt{11}) \cdot \frac{-4}{\sqrt{176}} \] \[ = \frac{-16\sqrt{2} + 16\sqrt{2} + 8\sqrt{11}}{\sqrt{176}} = \frac{8\sqrt{11}}{\sqrt{176}} = \frac{8\sqrt{11}}{4\sqrt{11}} = 2 \] So the absolute value is: \[ \boxed{2} \]
Was this answer helpful?
0
0

Questions Asked in GATE MA exam

View More Questions