Consider the following two spaces:
\[ \begin{aligned} X &= (C[-1, 1], \| \cdot \|_\infty), \quad \text{the space of all real-valued continuous functions} \\ &\quad \text{defined on } [-1, 1] \text{ equipped with the norm } \| f \|_\infty = \sup_{t \in [-1, 1]} |f(t)|. \\ Y &= (C[-1, 1], \| \cdot \|_2), \quad \text{the space of all real-valued continuous functions} \\ &\quad \text{defined on } [-1, 1] \text{ equipped with the norm } \| f \|_2 = \left( \int_{-1}^1 |f(t)|^2 \, dt \right)^{1/2}. \end{aligned} \]
Let \( W \) be the linear span over \( \mathbb{R} \) of all the Legendre polynomials. Then, which one of the following is correct?
The maximum value of the function \( f(x) = (x - 1)(x - 2)(x - 3) \) in the domain [0, 3] occurs at \( x = \) _________ (rounded off to two decimal places).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.
A square paper, shown in figure (I), is folded along the dotted lines as shown in figures (II) and (III). Then a few cuts are made as shown in figure (IV). Which one of the following patterns will be obtained when the paper is unfolded?
