Consider the following two spaces:
\[ \begin{aligned} X &= (C[-1, 1], \| \cdot \|_\infty), \quad \text{the space of all real-valued continuous functions} \\ &\quad \text{defined on } [-1, 1] \text{ equipped with the norm } \| f \|_\infty = \sup_{t \in [-1, 1]} |f(t)|. \\ Y &= (C[-1, 1], \| \cdot \|_2), \quad \text{the space of all real-valued continuous functions} \\ &\quad \text{defined on } [-1, 1] \text{ equipped with the norm } \| f \|_2 = \left( \int_{-1}^1 |f(t)|^2 \, dt \right)^{1/2}. \end{aligned} \]
Let \( W \) be the linear span over \( \mathbb{R} \) of all the Legendre polynomials. Then, which one of the following is correct?
The maximum value of the function \( f(x) = (x - 1)(x - 2)(x - 3) \) in the domain [0, 3] occurs at \( x = \) _________ (rounded off to two decimal places).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.
A square paper, shown in figure (I), is folded along the dotted lines as shown in figures (II) and (III). Then a few cuts are made as shown in figure (IV). Which one of the following patterns will be obtained when the paper is unfolded?
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative