We are given the system of equations: \[ z^2 = x^2 + y^2 \quad {and} \quad 4x + z = 7. \] We are to find the point \( P \) on the curve \( C \) that is at the minimum distance from the \( xy \)-plane. The distance of any point from the \( xy \)-plane is given by the absolute value of \( z \), i.e., \( |z| \).
Step 1: Express \( z \) in terms of \( x \) From the equation \( 4x + z = 7 \), solve for \( z \): \[ z = 7 - 4x. \] Substitute this into the equation \( z^2 = x^2 + y^2 \): \[ (7 - 4x)^2 = x^2 + y^2. \] Step 2: Minimize the distance To minimize the distance, we observe that at the minimum distance from the \( xy \)-plane, \( z = 0 \). So, set \( 7 - 4x = 0 \) to find the value of \( x \): \[ x = \frac{7}{4}. \] Substitute \( x = \frac{7}{4} \) into the equation \( z = 7 - 4x \): \[ z = 7 - 4\left(\frac{7}{4}\right) = 0. \]
Thus, the minimum distance from the origin is \( \frac{7\sqrt{2}}{5} \).
The correct answer is: \[ \boxed{(B) \frac{7\sqrt{2}}{5}}. \]
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).