>
CUET (UG)
>
Mathematics
List of top Mathematics Questions asked in CUET (UG)
The value of
\(\int_1^4|x-1|dx \)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
The area of the region bounded by the curve
\( 2y=3x-6\)
, y-axis and the line y=2 and y = −3 is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
A pair of dice is thrown 3 times. If getting a doublet is considered a success, then the probability of two successes is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
Match List - I with List - II.
List - I
List -II
(A)
\(P(\overline{A} \cap B)\)
(I)
\(P(A)+P(B)\)
(B)
\(P(A\cap \overline B)\)
(II)
\(P(A)+P(B)-2P(A\cap B)\)
(C)
\(P[(A\cap \overline B) \cup (\overline A \cap B)]\)
(III)
\(P(B)-P(A\cap B)\)
(D)
\(P(A\cup B)+ P(A\cap B)]\)
(IV)
\(P(B)-P(A\cap B)\)
Choose the
correct
answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Set Theory
The value of objective function is maximum under linear constraints is
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The feasible region of an LPP is shown in the figure below.
If
\( z=3x+9y\)
, then the minimum value of
\(z\)
occurs at :
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
If
\(f(x)=e^x\)
and
\(g(x)=log_{e}{x}=lnx \)
then
\((gof)(x) \)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Composition of Functions and Invertible Function
The region R on the set
\(A=\{x \in Z:0\leq x\leq 12\}\)
, given by
\(R=\{(a,b):|a-b|\)
is a multiple of 4
\(\}\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and functions
The value of
\(sin^{-1} [cos(sin^{-1}\frac {\sqrt{3}}{2})]\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
\(2\tan^{-1} \frac12+\tan^{-1}\frac 17=\tan^{-1}x\)
, then the value of
\(x\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
If
\(\begin{bmatrix} 1 & 2 \\[0.3em] 3 &4 \end{bmatrix}\)
\(\begin{bmatrix} 3& 1 \\[0.3em] 2 &5 \end{bmatrix}\)
\(=\begin{bmatrix} 7 & 11 \\[0.3em] K&23 \end{bmatrix}\)
,then the value of k is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(A=\begin{pmatrix} 1 & -2 & 3 \\[0.3em] 4 & 2 &5 \end{pmatrix}\)
and
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 4 & 5 \\[0.3em] 2&1 \end{pmatrix}\)
and
\(BA=(b_{ij})\)
,then
\(b_{21}+b_{32}=\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(\begin{bmatrix} 1 & 3 & 5 \\[0.3em] 1 & 0 &3 \\[0.3em] 0 &1 &0 \end{bmatrix}\)
,then
\(|(adjA)| \)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Adjoint and Inverse of a Matrix
The value of
\(K\)
,If
\(\begin{bmatrix} 1 & K & 3 \\[0.3em] 3 & K & -2 \\[0.3em] 2 & 3 & -1 \end{bmatrix}=33\)
,is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The value of det
\((A^2-2A)\)
,If
\(A=\begin{pmatrix} 1 & 3 \\[0.3em] 2 &1 \end{pmatrix}\)
,is
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If
\(\begin{bmatrix} x+4 & 2x & 2x \\[0.3em] 2x & x+4 & 2x\\[0.3em] 2x & 2x & x+4 \end{bmatrix}=\lambda(4-x)^2\)
,then value of
\(\lambda \)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
for which value of
\(\lambda\)
is the function ,
\(f(x) = \begin{cases} \lambda(x^2-2x) & \text{if } x \leq 0 \\ 4x+1& \text{if } x > 0 \end{cases}\)
continuous at
\(x=0 ?\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Continuity and differentiability
The derivative
\(\frac{\mathrm dy}{\mathrm d x}\)
,if
\(x=a(\theta -sin\theta),y=a(1+cos\theta)\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
If
\(y=sin^{-1}x \)
and
\((1-x^2)\frac{d^2y}{dx^2} -x \frac{dy}{dx}=K\)
,then value of K is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
If
\(y=log[\frac{x^2}{e^2}]\)
then value of
\(\frac{d^2y}{dx^2}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
The condition on a and b, such that for
\(y = \frac{a}{x}-\frac{b}{x²}\)
,
\(\frac{dy}{dx} =0\)
at x=1 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
The interval in which the function
\(f(x) = 10-6x-2x²\)
is decreasing is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Increasing and Decreasing Functions
Area of the region bounded by the curve |x|+|y|=1 and x-axis is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
The value of the integral
\(\int\limits_2^4 \frac{x}{x^2+1} dx\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
The sum of order and degree of the differential equation
\[\frac{\{1+(\frac{dy}{dx})^2\}^\frac{5}{2}}{\frac{d^2y}{dx^2}}=p\]
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Order and Degree of a Differential Equation
Prev
1
...
11
12
13
14
15
...
32
Next