We start with the given equation:
\( e^y = x^x \).
Take the natural logarithm of both sides:
\( y = \ln(x^x) \).
Simplify using logarithmic properties:
\( y = x \ln(x) \).
Differentiate \( y \) with respect to \( x \):
\( \frac{dy}{dx} = \ln(x) + 1 \).
Differentiate again to find the second derivative:
\( \frac{d^2y}{dx^2} = \frac{1}{x} \).
Substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the given options. For option (4):
\( y \frac{d^2y}{dx^2} - \frac{dy}{dx} + 1 = \left( x \ln(x) \cdot \frac{1}{x} \right) - (\ln(x) + 1) + 1 \).
Simplify:
\( \ln(x) - (\ln(x) + 1) + 1 = 0 \).
Thus, option (4) satisfies the equation.