Differentiate the given curve implicitly:
\[\frac{d}{dx} \left( \frac{5}{x^2} + \frac{5}{y^2} \right) = \frac{d}{dx}(33).\]
Using the chain rule:
\[-\frac{10}{x^3} - \frac{10}{y^3} \cdot \frac{dy}{dx} = 0.\]
Rearrange to find \(\frac{dy}{dx}\):
\[\frac{dy}{dx} = -\frac{10}{x^3} \div -\frac{10}{y^3} = -\frac{y^3}{x^3}.\]
At the point (1, 4):
\[\frac{dy}{dx} = -\frac{4^3}{1^3} = -64.\]
The equation of the tangent is:
\[y - y_1 = m(x - x_1),\]
where \(m = -64\), \((x_1, y_1) = (1, 4)\). Substituting:
\[y - 4 = -64(x - 1).\]
Simplify:
\[y - 4 = -64x + 64 \quad \Rightarrow \quad x + 8y - 33 = 0.\]