The inequality \( |3x| \geq |6 - 3x| \) involves absolute values, so split into cases:
Case 1: \( 3x \geq 6 - 3x \):
\( 3x + 3x \geq 6 \implies 6x \geq 6 \implies x \geq 1 \).
Case 2: \( 3x \leq -(6 - 3x) \):
\( 3x \leq -6 + 3x \implies 0 \leq -6 \),
which is not possible.
Thus, the solution is \( x \geq 1 \), or \([1, \infty)\).
LIST I | LIST II | ||
A. | The solution set of the inequality \(5x-8\gt2x+3,x\in R\ is,\) | I. | \((-\infin,\frac{6}{5}]\) |
B. | The solution set of the inequality \(3x-4\lt5x+7,x\in R\ is,\) | II. | \((\frac{6}{5},\infin)\) |
C. | The solution set of the inequality \(4x+15\le3(1-2x)is,\) | III. | \([10,\infin)\) |
D. | The solution set of the inequality \(7x-8\ge2(1+3x)is,\) | IV. | \((-\frac{11}{2},\infin)\) |