>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
If
$\sin(\theta + \alpha) = \cos(\theta + \alpha),$
then the value of
$\frac{1 - \tan \alpha}{1+ \tan \alpha}$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Trigonometric Functions
The number of points at which
$f(x) = 3 + 2\, \, \, \sin x$
has maximum in the interval $\left( - \frac{11 \pi}{2} , 100 \pi \right)$ is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
The projection of
$\vec{a} = 5\hat{i} - \hat{j} + 3 \hat{k}$
on
$\vec{b} = 2 \hat{i} + \hat{j} - \hat{k}$
is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Vector Algebra
In a triangle
$ABC$
if
$\begin{vmatrix}1&a&b\\ 1&c&a\\ 1&b&c\end{vmatrix} = 0$
, then
$\sin^2 A + \sin^2 B + \sin^2 C = $
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Determinants
If the area of triangle formed by the points
$(\alpha, 0), (0, 1)$
and
$(-1, 0)$
is 20 s units, then
$\alpha$
is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Straight lines
The area of the triangle whose vertices are
$A = (1, -1, 2), B = (2, 1, -1)$
and
$C = (3, -1, 2)$
is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
angle between two lines
The coordinates of the circumcentre of the triangle with vertices
$(2, 3), (4, -1) $
and
$ (4, 3) $
are
COMEDK UGET - 2006
COMEDK UGET
Mathematics
coordinates of a point in space
The number of positive divisors of 67375 which are greater than 5 is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Permutations
If
$ \sqrt{x} + \frac{1}{\sqrt{x}} = 2 \, \cos \theta $
, then
$x^6 + x^6 = $
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Complex Numbers and Quadratic Equations
The differential equation whose general solution is
$Ax^2 + By^2 = 1$
, where
$A$
and
$B$
are arbitrary constants is of ?
COMEDK UGET - 2006
COMEDK UGET
Mathematics
General and Particular Solutions of a Differential Equation
If
$a, b, c$
are in G.P and
$x^a = y^b = z^c$
, then
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Sequence and series
A point on the curve
$2y^3 + x^2 = 12y$
at which the tangent to the curve is vertical is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
If
$g$
is the inverse function of
$f$
and
$f'(x) = \frac{1}{ 1+x^n} $
, then the value of
$g'(x)$
is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
$\displaystyle\lim_{x \to \infty} \left( \frac{x+6}{x+1}\right)^{x+4} =$
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
If
$y= \sin^{-1} (3^{-x})$
, then
$\frac{dy}{dx} = $
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
If
$ f(x) = x^m$
, where
$m$
is a positive integer then the value of
$m$
for which
$f'(\alpha + \beta) = f'(\alpha ) + f'(\beta)$
for all
$ \alpha , \beta > 0$
is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
The points of discontinuities of
$f(x) = \left(\frac{\pi x}{x+1} \right)$
other than
$x = -1$
are
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
$f(x) = \begin{cases} x , \text{if } x \text{ is rational}\\ 0, \text{if } x \text{ is rational} \end{cases}
$ then $
f$ is
COMEDK UGET - 2006
COMEDK UGET
Mathematics
Statistics
The value of the integral
$\int\limits_{0}^{\pi/ 4} \frac{1+\sin^{2} }{ \cos^{3} x} dx $
is
COMEDK UGET - 2005
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
$\lambda_1 , \lambda_2$
and
$\lambda_3$
are the eigen values (i.e. characteristic values) of the matrix
$\begin{vmatrix}1&2&15\\ 3&4&11\\ 5&6&7\end{vmatrix}$
then
$ \left(1 -\lambda_{1}\right)\left(1+\lambda _{2}\right)\left(1+\lambda _{3}\right)$
equals
COMEDK UGET - 2005
COMEDK UGET
Mathematics
Determinants
If
$p, q , r$
are the roots of the equation
$\begin{vmatrix}x&1&2\\ 1&x&2\\ 1&2&x\end{vmatrix} = 0$
, then
$\frac{p^{4} +q^{4}+r^{4}}{p^{2}+q^{2} +r^{2}}$
is equal to
COMEDK UGET - 2005
COMEDK UGET
Mathematics
Determinants
Define
$f (x) = min{x^2 + 1, x + 1]$
for.
$x e\in R$
. Then
$ \int\limits_{-1}^1f (x)dx $
is
COMEDK UGET - 2005
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
$A$
is a square matrix.such that
$A^3 = 0$
, then
$(I + A)^{-1}$
is
COMEDK UGET - 2005
COMEDK UGET
Mathematics
Matrices
If
$n$
is a positive integer which is relatively prime to
$6,$
and if
$n$
has
$8$
divisors, then
$12n$
has
COMEDK UGET - 2005
COMEDK UGET
Mathematics
Probability
If
$\sin(\pi \cos \theta) = \cos(\pi \sin \theta),$
then
$\sin 2 \theta$
equals
COMEDK UGET - 2005
COMEDK UGET
Mathematics
applications of integrals
Prev
1
...
7
8
9
10
Next