Step 1: Use the identity for \( \sin 2x \)
\[
\sin 2x + \cos x = 0 \Rightarrow 2 \sin x \cos x + \cos x = 0
\]
Step 2: Take common factor
\[
\cos x (2 \sin x + 1) = 0
\]
Step 3: Solve each factor separately
Case 1: \( \cos x = 0 \)
\[
x = \frac{\pi}{2}, \frac{3\pi}{2}, \dots \Rightarrow x = (2n + 1)\frac{\pi}{2}
\]
Case 2: \( 2 \sin x + 1 = 0 \Rightarrow \sin x = -\frac{1}{2} \)
\[
x = \sin^{-1} \left(-\frac{1}{2} \right) = -\frac{\pi}{6}
\]
Step 4: General solution for \( \sin x = -\frac{1}{2} \)
\[
x = n\pi + (-1)^n \left(-\frac{\pi}{6}\right) = n\pi + (-1)^{n+1} \frac{\pi}{6}
\Rightarrow x = n\pi + (-1)^n \frac{7\pi}{6} \quad (\text{since } -\frac{\pi}{6} \equiv \frac{11\pi}{6}, \text{ same modulo } 2\pi)
\]
Thus, the complete general solution is:
\[
x = (2n + 1)\frac{\pi}{2} \quad \text{or} \quad x = n\pi + (-1)^n \frac{7\pi}{6}
\]