Question:

If \( p = \hat{i} + \hat{j}, q = 4\hat{k} - \hat{j} \) and \( r = \hat{i} + \hat{k} \), then the unit vector in the direction of \( 3p + q - 2r \) is

Show Hint

To find the unit vector in a given direction, first calculate the vector, then divide by its magnitude.
Updated On: Apr 15, 2025
  • \( \frac{1}{3} (\hat{i} + 2\hat{j} + 2\hat{k}) \)
  • \( \frac{1}{3} (\hat{i} - 2\hat{j} - 2\hat{k}) \)
  • \( \frac{1}{3} (\hat{i} - 2\hat{j} + 2\hat{k}) \)
  • \( \hat{i} + 2\hat{j} + 2\hat{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


We are given the vectors: \[ p = \hat{i} + \hat{j}, \quad q = 4\hat{k} - \hat{j}, \quad r = \hat{i} + \hat{k} \] We need to find the unit vector in the direction of \( 3p + q - 2r \). First, calculate \( 3p + q - 2r \): \[ 3p = 3(\hat{i} + \hat{j}) = 3\hat{i} + 3\hat{j} \] \[ q = 4\hat{k} - \hat{j} \] \[ -2r = -2(\hat{i} + \hat{k}) = -2\hat{i} - 2\hat{k} \] Now, combine the vectors: \[ 3p + q - 2r = (3\hat{i} + 3\hat{j}) + (4\hat{k} - \hat{j}) + (-2\hat{i} - 2\hat{k}) \] \[ = (3\hat{i} - 2\hat{i}) + (3\hat{j} - \hat{j}) + (4\hat{k} - 2\hat{k}) \] \[ = \hat{i} + 2\hat{j} + 2\hat{k} \] Now, the magnitude of the vector is: \[ |\hat{i} + 2\hat{j} + 2\hat{k}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3 \] Thus, the unit vector is: \[ \frac{1}{3} (\hat{i} + 2\hat{j} + 2\hat{k}) \]
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions