We are given three vectors:
\( a = x\hat{i} + 2\hat{j}, b = y\hat{j} + 3\hat{k}, c = x\hat{i} + y\hat{j} + z\hat{k} \), and the condition \( a \times b = z\hat{i} - 3\hat{j} + \hat{k} \).
First, we calculate \( a \times b \):
\[
a \times b = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
x & 2 & 0
0 & y & 3
\end{vmatrix} = \hat{i} \begin{vmatrix} 2 & 0
y & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} x & 0
0 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} x & 2
0 & y \end{vmatrix}
\]
\[
= \hat{i} (2 \times 3 - 0 \times y) - \hat{j} (x \times 3 - 0 \times 0) + \hat{k} (x \times y - 2 \times 0)
\]
\[
= \hat{i} (6) - \hat{j} (3x) + \hat{k} (xy) = 6\hat{i} - 3x\hat{j} + xy\hat{k}
\]
Now compare this with \( a \times b = z\hat{i} - 3\hat{j} + \hat{k} \).
Equating the components:
\[
6 = z, \quad -3x = -3, \quad xy = 1
\]
From \( -3x = -3 \), we get \( x = 1 \).
Substituting \( x = 1 \) in \( xy = 1 \), we get \( y = 1 \).
Now, from \( 6 = z \), we get \( z = 6 \).
Thus, the value of \( [abc] \) is:
\[
[abc] = |a \cdot (b \times c)| = 9
\]