>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
If
$\tan A - \tan B = x$
and
$\cot B - \cot A = y$
, then
$\cot (A- B) =$
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Trigonometric Functions
The subtangent at
$x = \pi /2$
on the curve
$y = x \sin x$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Application of derivatives
If
$y =\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y}}}} +.....$
then
$ \frac{dy}{dx} $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Statistics
The function
$f\left(x\right) = \left(\frac{\log_{e}\left(1+ax\right) - \log_{e}\left(1-bx\right)}{x}\right)$
is undefined at
$x = 0$
. The value which should be assigned to
$f$
at
$x = 0$
so that it is continuous at
$x = 0$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Statistics
The maximum value of
$\left(\frac{1}{x}\right)^{2x^2}$
is
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Application of derivatives
Let
$x$
be a number which exceeds its square by the greatest possible quantity, then
$x$
=
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Application of derivatives
Which of the following functions is differentiable at
$x = 0$
?
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Continuity and differentiability
If
$x= a\left(\cos t+\log \tan \frac{t}{2}\right), y = a \sin t, $
then
$ \frac{dy}{dx} $
COMEDK UGET - 2009
COMEDK UGET
Mathematics
Continuity and differentiability
$\int \frac{2^{x+1} - 5^{x-1}}{10^{x}}dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\int \frac{1}{x+x^{5}}dx =f\left(x\right)+c , $
then
$\int \frac{x^{4}}{x+x^{5}} dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If a set
$A$
has
$n$
elements, then the number of relations on
$A$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Relations and functions
If
$\vec{a} = \hat{i} + \lambda \hat{j} + 2 \hat{k}$
and
$\vec{b} = \mu \hat{i} + \lambda \hat{j} + 2 \hat{k}$
are orthogonal and if
$|\vec{a} | = |\vec{b}|$
, then
$(\lambda, \mu)$
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Vector Algebra
If
$y =\left(1+x\right)\left(1+x^{2}\right) ....\left(1+x^{100}\right),$
then
$\frac{dx}{dy} $
at
$x = 0$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
limits and derivatives
$\lim_{x\to0} \frac{\tan x -\sin x}{x^{3}} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
limits and derivatives
If
$\vec{a} , \vec{b} ,\vec{c}$
are unit vectors and
$\theta$
is the angle between them, then
$| \vec{a} - \vec{b}| = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Vector Algebra
The acute angle between the hour hand and minute hand of a clock when the time is
$5\, hours$
and
$40\, minute$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
measurement of angles
If
$\log (x + z) + \log (x - 2y + z) = 2 \log (x - z),$
then
$ x, y, z$
are in
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Sequence and series
$\displaystyle\lim_{n\to\infty} \frac{1^{2}+2^{2} +...+n^{2}}{4n^{3}+6n^{2}-5n+1}=$
COMEDK UGET - 2008
COMEDK UGET
Mathematics
limits and derivatives
If
$C$
is the centre of the ellipse
$\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 $
and S is one of the foci, then the ratio of CS to semi-minor axis of the ellipse is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Conic sections
The modulus and amplitude of
$\frac{ 1 + 2i}{1 - (1 - i)^2}$
are respectively
COMEDK UGET - 2008
COMEDK UGET
Mathematics
complex numbers
The derivative of
$\sin x^{\circ} \, \, \cos x$
with respect to
$x$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Differentiability
If
$n$
is a non-negative integer and
$A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix} $
, then
$A^n = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Matrices
The value of
$x$
for which
$f(x) = x^3 - 6x^2 - 36x + 7 $
is increasing, belong to
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Application of derivatives
If
$ y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right)$
, then
$ \frac{dy}{dx} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
The value of
$\tan^{-1} \frac{\sqrt{2+\sqrt{3}} -\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3} } +\sqrt{2-\sqrt{3}}} $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
Prev
1
...
5
6
7
8
9
10
Next