We are given the differential equation:
\[
x \frac{dy}{dx} = \cot y
\]
Step 1: Rearranging the equation
Divide both sides by \(x\) to isolate \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{\cot y}{x}
\]
Step 2: Separate the variables
\[
\sin y \cos y \frac{dy}{\sin^2 y} = \frac{dy}{\tan y} = \frac{dx}{x}
\Rightarrow \tan y \, dy = \frac{dx}{x}
\]
Actually, let's directly rearrange:
\[
\cot y \, dy = \frac{dx}{x}
\]
Step 3: Integrate both sides
\[
\int \cot y \, dy = \int \frac{dx}{x}
\]
Recall that:
\[
\int \cot y \, dy = \ln|\sin y| + C_1 \quad \text{and} \quad \int \frac{1}{x} dx = \ln|x| + C_2
\]
So:
\[
\ln|\sin y| = \ln|x| + c
\quad \text{(where } c = C_2 - C_1 \text{)}
\]
Step 4: Exponentiate both sides
\[
|\sin y| = A|x| \quad \text{where } A = e^c
\]
\[
x \frac{dy}{dx} = \cot y
\Rightarrow \tan y \, dy = \frac{dx}{x}
\text{ is incorrect. Let's fix it.}
\]
Now integrate:
\[
\int \tan y \, dy = \int \frac{dx}{x}
\]
\[
\int \tan y \, dy = -\ln|\cos y| \quad \text{and} \quad \int \frac{1}{x} dx = \ln|x|
\]
\[
-\ln|\cos y| = \ln|x| + c
\Rightarrow \ln\left(\frac{1}{\cos y}\right) = \ln|x| + c
\Rightarrow \ln\left(\frac{1}{\cos y}\right) = \ln|Ax| \quad \text{where } A = e^c
\]
\[
\frac{1}{\cos y} = Ax \Rightarrow x \cos y = \text{constant}
\]
Thus, the required solution is:
\[
x \cos y = c
\]