>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
If
[
x
]
[x]
[
x
]
denotes the greatest integer function, then
∫
1
4
(
[
x
]
−
1
)
(
[
x
]
−
2
)
(
[
x
]
−
3
)
(
[
x
]
−
4
)
d
x
=
\int\limits_{1}^{4} \left(\left[x\right] -1\right)\left(\left[x\right] -2\right)\left(\left[x\right] -3\right)\left(\left[x\right] -4\right)dx =
1
∫
4
(
[
x
]
−
1
)
(
[
x
]
−
2
)
(
[
x
]
−
3
)
(
[
x
]
−
4
)
d
x
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
log
2
sin
x
−
log
2
cos
x
−
log
2
(
1
−
tan
2
x
)
=
−
1
\log_2 \: \sin x - \log_2 \cos x -\log_2(1 - \tan^2x) = - 1
lo
g
2
sin
x
−
lo
g
2
cos
x
−
lo
g
2
(
1
−
tan
2
x
)
=
−
1
, then
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Trigonometric Functions
If
u
=
f
(
x
2
)
,
v
=
g
(
x
3
)
,
f
′
(
x
)
=
sin
x
u = f(x^2) , v = g(x^3) , f'(x) = \sin x
u
=
f
(
x
2
)
,
v
=
g
(
x
3
)
,
f
′
(
x
)
=
sin
x
and
g
′
(
x
)
=
cos
x
,
g'(x) = \cos x,
g
′
(
x
)
=
cos
x
,
then
d
u
d
v
=
\frac{du}{dv} =
d
v
d
u
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
x
=
3
cos
t
−
2
cos
3
t
,
y
=
3
sin
t
−
2
sin
3
t
,
x= 3 \cos t - 2 \cos^{3} t , y = 3\sin t - 2 \sin^{3} t ,
x
=
3
cos
t
−
2
cos
3
t
,
y
=
3
sin
t
−
2
sin
3
t
,
then
d
2
y
d
x
2
t
=
π
6
\frac{d^{2}y}{dx^{2}} t = \frac{\pi}{6}
d
x
2
d
2
y
t
=
6
π
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
tan
−
1
(
x
y
)
+
log
x
2
+
y
2
=
0
\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0
tan
−
1
(
y
x
)
+
lo
g
x
2
+
y
2
=
0
, then
d
x
d
y
=
\frac{dx}{dy} =
d
y
d
x
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
Let
f
(
x
)
=
log
(
1
+
e
x
)
−
log
(
1
−
x
)
x
,
x
≠
0
f\left(x\right) = \frac{\log\left(1+ex\right)-\log\left(1-x\right)}{x} , x\ne0
f
(
x
)
=
x
l
o
g
(
1
+
e
x
)
−
l
o
g
(
1
−
x
)
,
x
=
0
. Then
f
f
f
is continuous at
x
=
0
x = 0
x
=
0
if
f
(
0
)
f(0)
f
(
0
)
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
1
−
x
2
+
1
−
y
2
=
x
−
y
\sqrt{1-x^{2} } + \sqrt{1- y^{2}} =x -y
1
−
x
2
+
1
−
y
2
=
x
−
y
, then
d
y
d
x
=
\frac{dy}{dx} =
d
x
d
y
=
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
A particular solution of
d
y
d
x
=
(
x
+
9
y
)
2
\frac{dy}{dx} = (x+9y)^2
d
x
d
y
=
(
x
+
9
y
)
2
when
x
=
0
,
y
=
1
27
x = 0, y = \frac{1}{27}
x
=
0
,
y
=
27
1
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Differential equations
A set
A
A
A
has
5
5
5
elements. Then the maximum number of relations on
A
A
A
(including empty relation) is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Relations and functions
The angle between the asymptotes of the hyperbola
x
2
−
3
y
2
=
12
x^2 - 3y^2 = 12
x
2
−
3
y
2
=
12
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Hyperbola
The amplitude of
sin
π
5
+
i
(
1
−
cos
π
5
)
\sin \frac{\pi}{5} + i\left( 1 - \cos \frac{\pi}{5}\right)
sin
5
π
+
i
(
1
−
cos
5
π
)
COMEDK UGET - 2007
COMEDK UGET
Mathematics
argand plane
If
a
=
5
,
b
=
13
,
c
=
12
a= 5, b = 13 , c = 12
a
=
5
,
b
=
13
,
c
=
12
in
Δ
A
B
C
\Delta ABC
Δ
A
BC
, then
tan
B
4
\tan \frac{B}{4}
tan
4
B
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Trigonometric Functions
The derivative of
cos
−
1
(
1
−
x
2
1
+
x
2
)
\cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)
cos
−
1
(
1
+
x
2
1
−
x
2
)
with respect to
cot
−
1
(
1
−
3
x
2
3
x
−
x
3
)
\cot^{-1} \left(\frac{1-3x^{2}}{3x-x^{3}}\right)
cot
−
1
(
3
x
−
x
3
1
−
3
x
2
)
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
The function
f
(
x
)
=
{
x
2
for
x
<
1
2
−
x
for
x
≥
1
f(x) = \begin{cases} x^2 & \quad \text{for } x < 1\\ 2 - x & \quad \text{for } x \geq 1 \end{cases}
f
(
x
)
=
{
x
2
2
−
x
for
x
<
1
for
x
≥
1
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
The vectors
a
⃗
=
x
i
^
+
(
x
+
1
)
j
^
+
(
x
+
2
)
k
^
\vec{a} = x \hat{i} + (x +1) \hat{j} + ( x +2 ) \hat{k}
a
=
x
i
^
+
(
x
+
1
)
j
^
+
(
x
+
2
)
k
^
b
⃗
=
(
x
+
3
)
i
^
+
(
x
+
4
)
j
^
+
(
x
+
5
)
k
^
\vec{b} = (x + 3) \hat{i} + (x +4) \hat{j} + ( x + 5 ) \hat{k}
b
=
(
x
+
3
)
i
^
+
(
x
+
4
)
j
^
+
(
x
+
5
)
k
^
, and
c
⃗
=
(
x
+
6
)
i
^
+
(
x
+
7
)
j
^
+
(
x
+
8
)
k
^
\vec{c} = (x + 6) \hat{i} + (x + 7 ) \hat{j} + ( x + 8) \hat{k}
c
=
(
x
+
6
)
i
^
+
(
x
+
7
)
j
^
+
(
x
+
8
)
k
^
are co-planar for
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
The value of
[
a
⃗
−
b
⃗
b
⃗
−
c
⃗
c
⃗
−
a
⃗
]
[ \vec{a} - \vec{b} \,\,\,\,\,\, \vec{b} - \vec{c} \,\,\,\,\,\, \vec{c} - \vec{a} ]
[
a
−
b
b
−
c
c
−
a
]
where
∣
a
⃗
∣
=
1
,
∣
b
⃗
∣
=
5
,
∣
c
⃗
∣
=
3
|\vec{a}| = 1 , |\vec{b} | = 5 , |\vec{c}| = 3
∣
a
∣
=
1
,
∣
b
∣
=
5
,
∣
c
∣
=
3
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
The maximum value of
f
(
x
)
=
log
x
x
,
0
<
x
<
∞
f(x) = \frac{\log x}{x} , 0 < x < \infty
f
(
x
)
=
x
l
o
g
x
,
0
<
x
<
∞
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Maxima and Minima
If
a
a
a
and
b
b
b
are positive integers such that
a
2
−
b
2
a^2 - b^2
a
2
−
b
2
is a prime number, then
a
2
−
b
2
a^2 - b^2
a
2
−
b
2
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Binomial theorem
Let $f(x) = \begin{cases} -2 \sin x, &x \leq - \pi /2 \\ a \sin x +b, & - \pi /2 < x < \pi /2 \\ \cos \, x , & x \geq \pi /2 \end{cases}
t
h
e
n
t
h
e
?
v
a
l
u
e
s
o
f
a
a
n
d
b
s
o
t
h
a
t
then the? values of a and b so that
t
h
e
n
t
h
e
?
v
a
l
u
eso
f
aan
d
b
so
t
ha
t
f(x)$ is continuous are
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Statistics
If the medians
A
D
AD
A
D
and
B
E
BE
BE
of the triangle with vertices
A
(
0
,
b
)
,
B
(
0
,
0
)
,
C
(
a
,
0
)
A(0, b), B(0, 0), C(a, 0)
A
(
0
,
b
)
,
B
(
0
,
0
)
,
C
(
a
,
0
)
are mutually perpendicular, then
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Straight lines
If
x
y
=
log
x
x^y = \log x
x
y
=
lo
g
x
, then
d
y
d
x
\frac{dy}{dx}
d
x
d
y
at the point where the curve cuts the
x
−
a
x
i
s
x-axis
x
−
a
x
i
s
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
If
y
=
tan
−
1
(
sec
x
−
tan
x
)
y = \tan^{-1} ( \sec x - \tan x)
y
=
tan
−
1
(
sec
x
−
tan
x
)
, then
d
y
d
x
=
\frac{dy}{dx} =
d
x
d
y
=
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
If
A
,
B
,
C
,
D
A, B, C, D
A
,
B
,
C
,
D
are four points and
A
B
⃗
=
D
C
⃗
\vec{AB} = \vec{DC}
A
B
=
D
C
, then
A
C
⃗
+
B
D
⃗
=
\vec{AC} + \vec{BD} =
A
C
+
B
D
=
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
tan
[
1
2
sin
−
1
(
2
x
1
+
x
2
)
+
1
2
cos
−
1
(
1
−
x
2
1
+
x
2
)
]
=
\tan\left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^{2}}\right) + \frac{1}{2} \cos^{-1} \left(\frac{1-x^{2}}{1+x^{2}}\right)\right] =
tan
[
2
1
sin
−
1
(
1
+
x
2
2
x
)
+
2
1
cos
−
1
(
1
+
x
2
1
−
x
2
)
]
=
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
x
=
log
a
b
c
,
y
=
log
b
c
a
,
z
=
log
c
a
b
,
x = \log_a bc, y = \log_b ca, z = \log_c ab,
x
=
lo
g
a
b
c
,
y
=
lo
g
b
c
a
,
z
=
lo
g
c
ab
,
then
x
1
+
x
+
y
1
+
y
+
z
1
+
z
=
\frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z } =
1
+
x
x
+
1
+
y
y
+
1
+
z
z
=
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Probability
Prev
1
...
6
7
8
9
10
Next