>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
If
$[x]$
denotes the greatest integer function, then
$\int\limits_{1}^{4} \left(\left[x\right] -1\right)\left(\left[x\right] -2\right)\left(\left[x\right] -3\right)\left(\left[x\right] -4\right)dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\log_2 \: \sin x - \log_2 \cos x -\log_2(1 - \tan^2x) = - 1$
, then
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Trigonometric Functions
If
$u = f(x^2) , v = g(x^3) , f'(x) = \sin x $
and
$g'(x) = \cos x,$
then
$ \frac{du}{dv} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$x= 3 \cos t - 2 \cos^{3} t , y = 3\sin t - 2 \sin^{3} t ,$
then
$ \frac{d^{2}y}{dx^{2}} t = \frac{\pi}{6}$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 $
, then
$\frac{dx}{dy} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
Let
$f\left(x\right) = \frac{\log\left(1+ex\right)-\log\left(1-x\right)}{x} , x\ne0 $
. Then
$f$
is continuous at
$x = 0$
if
$f(0)$
=
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\sqrt{1-x^{2} } + \sqrt{1- y^{2}} =x -y $
, then
$\frac{dy}{dx} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
A particular solution of
$ \frac{dy}{dx} = (x+9y)^2$
when
$ x = 0, y = \frac{1}{27}$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Differential equations
A set
$A$
has
$5$
elements. Then the maximum number of relations on
$A$
(including empty relation) is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Relations and functions
The angle between the asymptotes of the hyperbola
$x^2 - 3y^2 = 12$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Hyperbola
The amplitude of
$\sin \frac{\pi}{5} + i\left( 1 - \cos \frac{\pi}{5}\right) $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
argand plane
If
$a= 5, b = 13 , c = 12$
in
$\Delta ABC$
, then
$\tan \frac{B}{4}$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Trigonometric Functions
The derivative of
$\cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) $
with respect to
$\cot^{-1} \left(\frac{1-3x^{2}}{3x-x^{3}}\right)$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
The function $f(x) = \begin{cases} x^2 & \quad \text{for } x < 1\\ 2 - x & \quad \text{for } x \geq 1 \end{cases}$ is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
The vectors
$\vec{a} = x \hat{i} + (x +1) \hat{j} + ( x +2 ) \hat{k} $
$\vec{b} = (x + 3) \hat{i} + (x +4) \hat{j} + ( x + 5 ) \hat{k} $
, and
$\vec{c} = (x + 6) \hat{i} + (x + 7 ) \hat{j} + ( x + 8) \hat{k} $
are co-planar for
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
The value of
$[ \vec{a} - \vec{b} \,\,\,\,\,\, \vec{b} - \vec{c} \,\,\,\,\,\, \vec{c} - \vec{a} ]$
where
$|\vec{a}| = 1 , |\vec{b} | = 5 , |\vec{c}| = 3 $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
The maximum value of
$ f(x) = \frac{\log x}{x} , 0 < x < \infty$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Maxima and Minima
If
$a$
and
$ b$
are positive integers such that
$a^2 - b^2$
is a prime number, then
$a^2 - b^2$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Binomial theorem
Let $f(x) = \begin{cases} -2 \sin x, &x \leq - \pi /2 \\ a \sin x +b, & - \pi /2 < x < \pi /2 \\ \cos \, x , & x \geq \pi /2 \end{cases}
$ then the? values of a and b so that $
f(x)$ is continuous are
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Statistics
If the medians
$AD$
and
$BE$
of the triangle with vertices
$A(0, b), B(0, 0), C(a, 0)$
are mutually perpendicular, then
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Straight lines
If
$x^y = \log x$
, then
$\frac{dy}{dx} $
at the point where the curve cuts the
$x-axis$
is
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
If
$y = \tan^{-1} ( \sec x - \tan x) $
, then
$ \frac{dy}{dx} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Continuity and differentiability
If
$A, B, C, D$
are four points and
$\vec{AB} = \vec{DC}$
, then
$\vec{AC} + \vec{BD} = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Vector Algebra
$\tan\left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^{2}}\right) + \frac{1}{2} \cos^{-1} \left(\frac{1-x^{2}}{1+x^{2}}\right)\right] = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
$x = \log_a bc, y = \log_b ca, z = \log_c ab,$
then
$\frac{x}{1+x} + \frac{y}{1+y} + \frac{z}{1+z } = $
COMEDK UGET - 2007
COMEDK UGET
Mathematics
Probability
Prev
1
...
6
7
8
9
10
Next