The bond dissociation enthalpy of \( X_2 \) calculated from the given data is ---- kJ mol\(^{-1}\) (nearest integer).
% Given Data:
\[
M(s) + X(s) \rightarrow M^+(g) + X^-(g) \quad \Delta H_{\text{lattice}} = 800 \, \text{kJ/mol}
\]
\[
M(s) \rightarrow M(g) \quad \Delta H_{\text{sub}} = 100 \, \text{kJ/mol}
\]
\[
M(g) \rightarrow M^+(g) + e^-(g) \quad \Delta H_{\text{i}} = 500 \, \text{kJ/mol}
\]
\[
X(g) + e^-(g) \rightarrow X^-(g) \quad \Delta H_{\text{eg}} = -300 \, \text{kJ/mol}
\]
\[
M(s) + X_2(g) \rightarrow M^+X^-(s) \quad \Delta H_{\text{f}} = -400 \, \text{kJ/mol}
\]