Step 1: Balanced Chemical Equation
\[
\ch{CaCO3 + 2 HCl - > CaCl2 + H2O + CO2}
\]
Step 2: Calculate Moles of Reactants
\begin{itemize}
\item Moles of \ch{CaCO3}:
\[
\text{Molar mass of \ch{CaCO3}} = 40 + 12 + 3 \times 16 = 100\ \text{g/mol}
\]
\[
\text{Moles of \ch{CaCO3}} = \frac{25\ \text{g}}{100\ \text{g/mol}} = 0.25\ \text{moles}
\]
\item Moles of \ch{HCl}:
\[
\text{Molar mass of \ch{HCl}} = 1 + 35.5 = 36.5\ \text{g/mol}
\]
\[
\text{Moles of \ch{HCl}} = \frac{14.6\ \text{g}}{36.5\ \text{g/mol}} = 0.4\ \text{moles}
\]
\end{itemize}
Step 3: Determine Limiting Reagent
From the balanced equation:
\[
1\ \text{mole \ch{CaCO3}} \text{ reacts with } 2\ \text{moles \ch{HCl}}
\]
\[
\text{Required \ch{HCl} for 0.25 moles \ch{CaCO3}} = 0.25 \times 2 = 0.5\ \text{moles}
\]
Available \ch{HCl} is only 0.4 moles, so \ch{HCl is the limiting reagent}.
Step 4: Calculate Moles of \ch{CO2 Produced}
From the stoichiometry:
\[
2\ \text{moles \ch{HCl}} \text{ produce } 1\ \text{mole \ch{CO2}}
\]
\[
\text{Moles of \ch{CO2}} = \frac{0.4}{2} = 0.2\ \text{moles}
\]
Step 5: Volume of \ch{CO2 at STP}
At STP (Standard Temperature and Pressure):
\[
1\ \text{mole of gas} = 22.4\ \text{L}
\]
\[
\text{Volume of \ch{CO2}} = 0.2 \times 22.4 = 4.48\ \text{L}
\]
Final Answer
\[
\boxed{4.48\ \text{L}}
\]