Assertion (A): The function \( f(x) = x^2 - x + 1 \) is strictly increasing on \((-1, 1)\).
Reason (R): If \( f(x) \) is continuous on \([a, b]\) and derivable on \((a, b)\), then \( f(x) \) is strictly increasing on \([a, b]\) if \( f'(x)>0 \) for all \( x \in (a, b) \).