Step 1: Write the coefficient matrix \( A \):
\[
A = \begin{bmatrix} 2 & 3 \\ 11 & -5 \end{bmatrix}.
\]
Step 2: Compute the determinant \( \det(A) \):
\[
\det(A) = (2)(-5) - (11)(3) = -10 - 33 = -43.
\]
Step 3: Solve for \( x_1 \) and \( x_2 \) using determinants:
\[
x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}.
\]
Replace the first column of \( A \) with the constants \([5, 6]\) to get \( A_1 \):
\[
A_1 = \begin{bmatrix} 5 & 3 \\ 6 & -5 \end{bmatrix}, \quad \det(A_1) = (5)(-5) - (6)(3) = -25 - 18 = -43.
\]
Replace the second column of \( A \) with the constants \([5, 6]\) to get \( A_2 \):
\[
A_2 = \begin{bmatrix} 2 & 5 \\ 11 & 6 \end{bmatrix}, \quad \det(A_2) = (2)(6) - (11)(5) = 12 - 55 = -43.
\]
Step 4: Calculate \( x_1 \) and \( x_2 \):
\[
x_1 = \frac{\det(A_1)}{\det(A)} = \frac{-43}{-43} = 1, \quad x_2 = \frac{\det(A_2)}{\det(A)} = \frac{-43}{-43} = 1.
\]
Thus, the solution is:
\[
x_1 = 1, \quad x_2 = 1.
\]