Step 1: The general equation of a circle touching both axes is: \[ (x - r)^2 + (y - r)^2 = r^2, \] where \( r \) is the radius of the circle, and the center is at \( (r, r) \).
Step 2: Differentiate implicitly with respect to \( x \): \[ 2(x - r) + 2(y - r) \frac{dy}{dx} = 0 \quad \Rightarrow \quad (x - r) + (y - r) \frac{dy}{dx} = 0. \]
Step 3: Eliminate \( r \) using the relationship \( x^2 + y^2 = 2xr \): Substitute \( r = \frac{x^2 + y^2}{2x} \) into the equation: \[ \frac{dy}{dx} = -\frac{x - \frac{x^2 + y^2}{2x}}{y - \frac{x^2 + y^2}{2x}}. \]
Fit a straight-line trend by the method of least squares for the following data:
\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Year} & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\ \hline \textbf{Profit (₹ 000)} & 114 & 130 & 126 & 144 & 138 & 156 & 164 \\ \hline \end{array} \]When observed over a long period of time, a time series data can predict trends that can forecast increase, decrease, or stagnation of a variable under consideration. The table below shows the sale of an item in a district during 1996–2001:
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \textbf{Year} & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 \\ \hline \textbf{Sales (in lakh ₹)} & 6.5 & 5.3 & 4.3 & 6.1 & 5.6 & 7.8 \\ \hline \end{array} \]