For a Poisson distribution, the probability mass function is given by:
\[
P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}.
\]
Given that \( P(X = k) = P(X = k + 1) \), we equate:
\[
\frac{\lambda^k e^{-\lambda}}{k!} = \frac{\lambda^{k+1} e^{-\lambda}}{(k+1)!}.
\]
Simplifying, we get:
\[
\frac{1}{k!} = \frac{\lambda}{(k+1)!} \quad \Rightarrow \quad \lambda = k + 1.
\]
For a Poisson distribution, the variance is equal to \( \lambda \).
Thus, the variance of \( X \) is:
\[
{Variance} = k + 1.
\]