Find the solution to the following linear programming problem (if it exists) graphically:
Maximize \( Z = x + y \)
Subject to the constraints \[ x - y \leq -1, \quad -x + y \leq 0, \quad x, y \geq 0. \]
Step 1: Plot the constraints on the graph: \[ x - y = -1 \quad \Rightarrow \quad y = x + 1, \quad -x + y = 0 \quad \Rightarrow \quad y = x. \]
Step 2: Identify the feasible region satisfying \( x, y \geq 0 \) and the constraints.
Step 3: Compute \( Z = x + y \) at each vertex of the feasible region. The maximum \( Z \) is the solution.
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
In a Linear Programming Problem (LPP), the objective function $Z = 2x + 5y$ is to be maximized under the following constraints:
\[ x + y \leq 4, \quad 3x + 3y \geq 18, \quad x, y \geq 0. \] Study the graph and select the correct option.