Question:

Given matrix equation: \[ \begin{bmatrix} x - y & 2x + z \\ 2x - y & 3z + w \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix} \] Find the values of \( x, y, z, \) and \( w \).

Show Hint

When solving matrix equations, compare corresponding elements to create a system of equations, then solve step by step using substitution.
Updated On: Feb 11, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Equate the given matrices element by element: \[ x - y = -1, \quad 2x + z = 5, \quad 2x - y = 0, \quad 3z + w = 13. \] 
Step 2: Solve for \( x \) and \( y \) from \( x - y = -1 \) and \( 2x - y = 0 \): From \( 2x - y = 0 \), we get \( y = 2x \). Substitute \( y = 2x \) into \( x - y = -1 \): \[ x - 2x = -1 \quad \Rightarrow \quad -x = -1 \quad \Rightarrow \quad x = 1. \] Then \( y = 2(1) = 2 \). 
Step 3: Solve for \( z \) from \( 2x + z = 5 \): \[ 2(1) + z = 5 \quad \Rightarrow \quad z = 3. \] 
Step 4: Solve for \( w \) from \( 3z + w = 13 \): \[ 3(3) + w = 13 \quad \Rightarrow \quad 9 + w = 13 \quad \Rightarrow \quad w = 4. \] Thus, \( x = 1, y = 2, z = 3, w = 4 \).

Was this answer helpful?
0
0