Step 1: Equate the given matrices element by element: \[ x - y = -1, \quad 2x + z = 5, \quad 2x - y = 0, \quad 3z + w = 13. \]
Step 2: Solve for \( x \) and \( y \) from \( x - y = -1 \) and \( 2x - y = 0 \): From \( 2x - y = 0 \), we get \( y = 2x \). Substitute \( y = 2x \) into \( x - y = -1 \): \[ x - 2x = -1 \quad \Rightarrow \quad -x = -1 \quad \Rightarrow \quad x = 1. \] Then \( y = 2(1) = 2 \).
Step 3: Solve for \( z \) from \( 2x + z = 5 \): \[ 2(1) + z = 5 \quad \Rightarrow \quad z = 3. \]
Step 4: Solve for \( w \) from \( 3z + w = 13 \): \[ 3(3) + w = 13 \quad \Rightarrow \quad 9 + w = 13 \quad \Rightarrow \quad w = 4. \] Thus, \( x = 1, y = 2, z = 3, w = 4 \).
The system of simultaneous linear equations :
\[ \begin{array}{rcl} x - 2y + 3z &=& 4 \\ 2x + 3y + z &=& 6 \\ 3x + y - 2z &=& 7 \end{array} \]