>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
Evaluate the infinite series:
\[ \left|\begin{array}{ccc} 2 & 1 & \frac{1}{3} \\ 3 & 1 & 1 \\ \end{array}\right| + \left|\begin{array}{ccc} 1 & \frac{1}{3} & \frac{1}{2} \\ 3 & 1 & 1 \\ \end{array}\right| + \left|\begin{array}{ccc} 1 & \frac{1}{4} & \frac{1}{9} \\ 3 & 1 & 1 \\ \end{array}\right| + \left|\begin{array}{ccc} 1 & \frac{1}{4} & \frac{1}{27} \\ 3 & 1 & 1 \\ \end{array}\right| + \cdots = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
The range of the real valued function \( f(x) = \cos^{-1} \left( \dfrac{3}{\sqrt{9x^2 - 12x + 22}} \right) \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
If a function \( f(x) \) is given as:
\[ f(x) = \begin{cases} \frac{\sqrt{1+ax^2+bx^3}-\sqrt{1-ax^2-bx^3}}{x^2}, & x<0 \\ 5, & x = 0 \\ \frac{\tan3x-\sin3x}{bx^3}, & x>0 \end{cases} \]
and is continuous at \( x = 0 \), then the geometric mean of \( a \) and \( b \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
The differential equation for which \( y^2 = 4a(x + a) \) (where \( a \) is a parameter) is the general solution is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The general solution of the differential equation
\[ \frac{dy}{dx} = \frac{2xy-4x+y-2}{2xy+x-4y-2} \]
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The general solution of the differential equation \( \sec(x - y + 1) dy = dx \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Evaluate the integral:
\[ I = \int_0^{3\pi/2} \frac{\cos^5 x}{\cos^3 x+\sin^3 x}dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiation
Evaluate the integral:
\[ I = \int_{\pi/6}^{\pi/3} \cos^{-4} x \, dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Evaluate the integral:
\[ \int \frac{\sec^2 x}{(\sec x+\tan x)^{5/2}}dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Exponential and Logarithmic Functions
Evaluate the integral:
\[ \int \left[\frac{1}{\cos x} - \frac{1}{\sin x} - \frac{1}{\sin x + 3\cos x}\right] dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Evaluate the integral:
\[ \int \operatorname{Cos}^{-1} \left( \frac{1-x^2}{1+x^2} \right) dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Find the area (in square units) of the region bounded by the lines \( x=0 \), \( x=\frac{\pi}{2} \), and the curves \( f(x) = \sin x \), \( g(x) = \cos x \):
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
If the volume of a sphere is increasing at the rate of 12 \( \text{cm}^3/\text{sec} \), then the rate (in \( \text{cm}^2/\text{sec} \)) at which its surface area is increasing when the diameter of the sphere is 12 cm is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If the lengths of the tangent, subtangent, normal, and subnormal for the curve \( y = x^2 + x - 1 \) at the point \( (1,1) \) are \( a, b, c, \) and \( d \) respectively, then their increasing order is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
P and Q are the ends of a diameter of the circle \( x^2+y^2=a^2(a>\frac{1}{\sqrt{2}}) \). \( s \) and \( t \) are the lengths of the perpendiculars drawn from P and Q onto the line \( x+y=1 \) respectively. When the product \( st \) is maximum, the greater value among \( s, t \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
Evaluate the integral:
\[ \int \frac{x+1}{x^3 - 1}dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Let \( P(x) = x^4 + ax^3 + bx^2 + cx + d \) be such that \( x = 0 \) is the only real root of \( P'(x) = 0 \). If \( P(-1)<P(1) \), then in the interval \( [-1,1] \):
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
Evaluate the integral:
\[ \int \frac{x^4-16x^2+2x+8}{x^3-4x^2+2}dx \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
If \( y = \operatorname{Sin}^{-1} \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \) and \( -\frac{3\pi}{2}<x<-\frac{\pi}{2} \), then \( \frac{dy}{dx} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
A plane \( \pi \) given by \( ax+by+11z+d = 0 \) is perpendicular to the planes \( 2x-3y+z=4 \), \( 3x+y-z=5 \), and the perpendicular distance from the origin to the plane \( \pi \) is \( \sqrt{6} \) units. If all the intercepts made by the plane \( \pi \) on the coordinate axes are positive, then \( d = \):
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If \( x = \sqrt{2}e^t(\sin t - \cos t) \) and \( y = \sqrt{2}e^t(\sin t + \cos t) \), then \( \left[ \frac{d^2y}{dx^2} \right]_{t=\frac{\pi}{4}} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiability
The quadratic equation whose roots are
\[ l = \lim_{\theta \to 0} \left( \frac{3\sin\theta - 4\sin^3\theta}{\theta} \right) \] \[ m = \lim_{\theta \to 0} \left( \frac{2\tan\theta}{\theta(1-\tan^2\theta)} \right) \]
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Continuity
Evaluate the limit:
\[ \lim_{x \to \infty} \frac{3x+4\cos^2x}{\sqrt{x^2-5\sin^2x}} \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
If \( y = \log(\sec(\tan^{-1}x)) \) for \( x>0 \), then \( \frac{dy}{dx} \) at \( x = 1 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Prev
1
...
7
8
9
10
11
...
97
Next