Using substitution:
\[
u = \sec x + \tan x
\]
Differentiating:
\[
du = (\sec x \tan x + \sec^2 x)dx = \sec^2 x dx
\]
Rewriting the integral:
\[
\int \frac{du}{u^{5/2}}
\]
Applying the power rule:
\[
\int u^{-5/2} du = \frac{u^{-3/2}}{-3/2} = -\frac{2}{3} u^{-3/2}
\]
Another integral term:
\[
\int u^{-7/2} du = \frac{u^{-5/2}}{-5/2} = -\frac{2}{5} u^{-5/2}
\]
Rewriting:
\[
-\frac{(\sec x+\tan x)^{3/2}}{3} - \frac{(\sec x+\tan x)^{7/2}}{7} + c
\]
Thus, the correct answer is:
\[
-\frac{(\sec x+\tan x)^{3/2}}{3}-\frac{(\sec x+\tan x)^{7/2}}{7}+c
\]