Question:

The range of the real valued function \( f(x) = \cos^{-1} \left( \dfrac{3}{\sqrt{9x^2 - 12x + 22}} \right) \) is

Show Hint

To find the range of a function involving inverse trigonometric expressions, first determine the domain of the inner expression and its bounds. Then use the monotonicity of the inverse trig function to deduce the final range.
Updated On: Jun 5, 2025
  • \( \left(0, \dfrac{\pi}{4} \right] \)
  • \( \left[ \dfrac{\pi}{4}, \dfrac{\pi}{2} \right) \)
  • \( [0, \pi] \)
  • \( \left[ \dfrac{\pi}{6}, \dfrac{\pi}{2} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given: \[ f(x) = \cos^{-1} \left( \frac{3}{\sqrt{9x^2 - 12x + 22}} \right) \] Let us first simplify the expression under the square root. \[ 9x^2 - 12x + 22 = 9(x^2 - \frac{4}{3}x) + 22 \] Complete the square inside the bracket: \[ x^2 - \frac{4}{3}x = \left( x - \frac{2}{3} \right)^2 - \frac{4}{9} \] \[ 9(x^2 - \frac{4}{3}x) = 9\left[ \left( x - \frac{2}{3} \right)^2 - \frac{4}{9} \right] = 9 \left( x - \frac{2}{3} \right)^2 - 4 \] Now add 22: \[ 9x^2 - 12x + 22 = 9 \left( x - \frac{2}{3} \right)^2 + 18 \] Thus, \[ \sqrt{9x^2 - 12x + 22} = \sqrt{9 \left( x - \frac{2}{3} \right)^2 + 18} \] The minimum value of \( \left( x - \frac{2}{3} \right)^2 \) is 0, so the minimum value of the expression is: \[ \sqrt{18} = 3\sqrt{2} \] So the maximum value of the function inside the inverse cosine is: \[ \frac{3}{\sqrt{9x^2 - 12x + 22}} \leq \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} \] And the minimum value approaches 0 (as \( \sqrt{9x^2 - 12x + 22} \to \infty \)), so the expression inside the inverse cosine lies in: \[ \left( 0, \frac{1}{\sqrt{2}} \right] \] Now consider the range of \( \cos^{-1}(x) \). If \( x \in (0, \frac{1}{\sqrt{2}}] \), then: \[ \cos^{-1}(x) \in \left[ \cos^{-1} \left( \frac{1}{\sqrt{2}} \right), \cos^{-1}(0) \right) = \left[ \frac{\pi}{4}, \frac{\pi}{2} \right) \]
Was this answer helpful?
0
0

Questions Asked in AP EAPCET exam

View More Questions

AP EAPCET Notification