>
Exams
>
Mathematics
>
Limits and Exponential Functions
>
evaluate the limit lim x to infty frac 3x 4 cos 2x
Question:
Evaluate the limit:
\[ \lim_{x \to \infty} \frac{3x+4\cos^2x}{\sqrt{x^2-5\sin^2x}} \]
Show Hint
For limits involving infinity, divide by the highest degree of \( x \) to simplify terms effectively.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jun 5, 2025
\( \frac{3}{5} \)
\( \frac{4}{5} \)
\( 3 \)
\( 1 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Dividing numerator and denominator by \( x \): \[ \frac{3 + \frac{4\cos^2x}{x}}{\sqrt{1 - \frac{5\sin^2x}{x^2}}} \] For large \( x \), \( \frac{4\cos^2x}{x} \to 0 \) and \( \frac{5\sin^2x}{x^2} \to 0 \), simplifying: \[ \frac{3 + 0}{\sqrt{1 - 0}} = 3 \] Thus, the correct answer is: \[ 3 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits and Exponential Functions
Evaluate the following limit:
\[ \lim_{x \to \infty} \frac{(2x^2 - 3x + 5) \left( 3x - 1 \right)^{x/2}}{(3x^2 + 5x + 4) \sqrt{(3x + 2)^x}}. \]
The value of the limit is:
JEE Main - 2025
Mathematics
Limits and Exponential Functions
View Solution
If
\( \lim_{t \to \infty} \left( \int_0^{1} \left( 3x + 5 \right)^t dx \right) = \frac{\alpha}{5e} \left( \frac{8}{5} \right)^{\frac{3}{2}}, \) then \( \alpha \) is equal to ____ :
JEE Main - 2025
Mathematics
Limits and Exponential Functions
View Solution
If the function \( f \) defined by
\[ f(x) = \begin{cases} \dfrac{1 - \cos 4x}{x^2}, & x<0 \\ a, & x = 0 \\ \dfrac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}, & x>0 \end{cases} \]
is continuous at \( x = 0 \), then \( a = \)
AP EAPCET - 2025
Mathematics
Limits and Exponential Functions
View Solution
Evaluate the integral:
\[ \int_0^1 x^{5/2} (1 - x)^{3/2} \, dx = \]
AP EAPCET - 2025
Mathematics
Limits and Exponential Functions
View Solution
Evaluate \[ \int_0^\pi \left( \sin^3 x \cos^3 x + \sin^4 x \cos^4 x + \sin^3 x \cos^3 x \right) dx = ? \]
AP EAPCET - 2025
Mathematics
Limits and Exponential Functions
View Solution
View More Questions
Questions Asked in AP EAPCET exam
For all \( n \in \mathbb{N} \), if \( 1^3 + 2^3 + 3^3 + \cdots + n^3>x \), then a value of \( x \) among the following is:
AP EAPCET - 2025
Matrices
View Solution
$\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{4\pi}{7}\right) + \tan\left(\frac{4\pi}{7}\right)\tan\left(\frac{\pi}{7}\right) + \tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right) =$
AP EAPCET - 2025
Trigonometric Identities
View Solution
Let $ A(4, 3), B(2, 5) $ be two points. If $ P $ is a variable point on the same side of the origin as that of line $ AB $ and at most 5 units from the midpoint of $ AB $, then the locus of $ P $ is:
AP EAPCET - 2025
Coordinate Geometry
View Solution
The equation of the normal drawn at the point \((\sqrt{2}+1, -1)\) to the ellipse \(x^2 + 2y^2 - 2x + 8y + 5 = 0\) is
AP EAPCET - 2025
Geometry
View Solution
The equation \((2p - 3)x^2 + 2pxy - y^2 = 0\) represents a pair of distinct lines
AP EAPCET - 2025
Geometry
View Solution
View More Questions